This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-

41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

ELECTRON-TRANSFER PROCESSES. PART 40. REACTION OF ALKYL RADICALS WITH DIPHENYLPHOSPHIDE ANION

Glen A. Russella; Rajive K. Khanna

^a Department of Chemistry, Iowa State University, Ames, Iowa

To cite this Article Russell, Glen A. and Khanna, Rajive K.(1987) 'ELECTRON-TRANSFER PROCESSES. PART 40. REACTION OF ALKYL RADICALS WITH DIPHENYLPHOSPHIDE ANION', Phosphorus, Sulfur, and Silicon and the Related Elements, 29: 2, 271 - 274

To link to this Article: DOI: 10.1080/03086648708080512 URL: http://dx.doi.org/10.1080/03086648708080512

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

ELECTRON-TRANSFER PROCESSES. PART 40. REACTION OF ALKYL RADICALS WITH DIPHENYLPHOSPHIDE ANION

GLEN A. RUSSELL† and RAJIVE K. KHANNA

Department of Chemistry, Iowa State University, Ames, Iowa 50011

(Received January 6, 1986, in final form June 2, 1986)

The anion Ph₂P⁻ (K⁺, 18-crown-6) reacts with *t*-BuHgCl in HMPA to form Ph₂PCMe₃ by a free radical chain mechanism. In Me₂SO, Ph₂P(O)CMe₃ is produced. Reaction of Ph₂P⁻ with PhCOCH₂HgCl yields the oxidative dimerization product isolable from HMPA but readily converted to Ph₂P(O)P(O)Ph₂ in Me₂SO.

INTRODUCTION

Alkyl radicals can react with delocalized carbanions via addition or electron transfer. With nucleophilic radicals such as Me₃C⁻, addition is the preferred

$$R' + C' - \bigcap_{R = -C'} R - C'$$

route if reaction is going to occur.¹ On the other hand, with an electrophilic radical such as PhCOCH₂, electron transfer from easily oxidized carbanions is the observed course of the reaction.

RESULTS AND DISCUSSION

A convenient source of alkyl radicals in the presence of carbanions has been found to be the alkylmercury halide. When addition of the alkyl radical to the carbanion occurs, a free radical chain reaction of the S_{RN}-type can propagate (Scheme 1).^{1,2} Thus, the photostimulated reaction of t-BuHgCl with

$$R' + C^- \rightarrow R - C^-$$

 $R - C^{--} + RHgX \rightarrow R - C + R' + Hg^0 + X^-$
SCHEME 1

PhCOC(Ph)₂ yields PhCOC(Ph)₂CMe₃ via Scheme 1¹ while PhCOCH₂HgCl reacts readily with this carbanion to form PhCOCH₃ and PhCOC-(Ph)₂C(Ph)₂COPh, presumably via Scheme 2. Photostimulation or the presence

[†] Author to whom all correspondence should be addressed.

$$C^- + RHgX \rightarrow C' + R' + Hg^0 + X^ R' + C^- \rightarrow R^{-} + C'$$
 $2C' \rightarrow C - C$
SCHEME 2

of free radical traps such as $(t-Bu)_2NO$ have little effect on this oxidative dimerization reaction. The *tert*-butyl radical reacts via Scheme 1 and not by Scheme 2 even with such easily oxidized anions as 2,4-di-*tert*-butylphenoxide.

Towards (EtO)₂PO⁻ neither Me₃C' nor PhCOCH₂ have appreciable reactivity.³ However, towards Ph₂P⁻K⁺/18-crown-6 in hexamethylphosphoric triamide (HMPA) reactions occur analogous to those observed with an easily oxidized carbanion. The reaction with t-BuHgCl occurs by a photostimulated chain reaction to yield Ph₂PCMe₃, whereas towards PhCOCH₂HgCl a thermal reaction occurs readily yielding (Ph)₂PP(Ph)₂ (Table I). In Me₂SO similar reactions occur, but the only products isolable are the phosphine oxides (Ph₂P(O)CMe₃ and Ph₂P(O)-P(O)Ph₂) apparently formed by oxygen transfer from Me₂SO to the phosphines. In an independent experiment, it was demonstrated that in an argon atmosphere (Ph)₂PP(Ph)₂ is converted to the dioxide in 30 min at 25°C.

Phosphide anions participate in the free radical-electron transfer processes of Schemes 1 and 2 in a manner completely analogous to carbanions. The yield of Ph_2PCMe_3 prepared in this manner is higher than the yield reported in the reaction of Ph_2PCI with t-BuMgCl in THF at $-78^{\circ}C.^{4}$

TABLE I
Reactions of Ph₂PK with RHgCl

R	Conditions*	Product (Yield)
Me ₃ C	Me ₂ SO, 2 h	Ph ₂ P(O)CMe ₃ (38, b 35%c)
Me ₃ C	HMPA, 2h	Ph ₂ P(O)CMe ₃ (38, ^b 35% ^c) Ph ₂ PCMe ₃ (42, ^b 37% ^c) Ph ₂ P(O)CMe ₃ (7% ^b) Ph ₂ P(O)P(O)Ph ₂ (53, ^b 45% ^c) (Ph) ₂ PP(Ph) ₂ (58, ^b 47% ^c)
PhCOCH ₂	Me ₂ SO, 0.5 h	$Ph_{2}P(O)P(O)Ph_{2}(53, {}^{b}45\%^{c})$
PhCOCH ₂	HMPA, 0.5 h	$(Ph)_2 PP(Ph)_2 (58, 47\%^c)$

^a Reactions were performed in N₂-purged solvents in the presence of equimolar amounts of 18-crown-6, with irradiation from a 275 W sunlamp positioned ca. 15 cm from the Pyrex reaction flask.

^b Yields determined by ¹H NMR and GLC on a 1 mmol scale for reactions 0.1 M in RHgX and Ph₂PK.

c Isolated yields.

EXPERIMENTAL

Solutions of Ph₂PK were prepared immediately before use by the reaction of Ph₂PH with molar equivalents of Me₃COK and 18-crown-6 under nitrogen. After deoxygenation by N₂ bubbling for 15-30 min, the mercurial was added. Irradiated

experiments employed a 275 W sunlamp ca. 15 cm from the Pyrex flask. Product isolation involved treatment with 50–100 mL of deoxygenated water followed by extraction with deoxygenated Et₂O. Yields of products were obtained by GLC or ¹H NMR analysis of the concentrated Et₂O extracts using internal standards. Pure samples of the reaction products were obtained by distillation or crystallization. The ³¹P chemical shifts are reported as referenced to external 85% H₃PO₄ with resonances deshielded from the reference being reported as positive values.

Diphenyl-(1,1-dimethylethyl)phosphine Oxide

Reaction of 10 mmol of Me₃CHgCl, Ph₂P⁻K⁺ and 18-crown-6 in 60 mL of Me₂SO with sunlamp irradiation had an induction period of ~5 min after which Hg⁰ precipitated from the solution. After 2 h, the solution was decanted from the Hg⁰ and added to 50 mL deoxygenated H₂O. The Et₂O extract was dried over MgSO₄ and the solvent removed under vacuum. Recrystallization of the product from benzene gave 0.90 g (35%) of Ph₂P(O)CMe₃, mp 132°C (lit.⁵ mp 131–132°C); ¹H NMR (CDCl₃) δ 1.24 (D, 9H, J_{PCCH} = 15 Hz), 7.2–8.3 (m, 10H); ³¹P NMR (CDCl₃) δ 38.77; GCMS (rel. intensity) 258 (M⁺, 0.54), 202 (100), 183 (4.4), 155 (16.1), 125 (5.76), 77 (9.69), 57 (2.13), 51 (5.38), 47 (13.95).

Diphenyl-(1,1-dimethylethyl)phosphine

The photostimulated reaction of 15 mmol of t-BuHgCl, $Ph_2P^-K^+$ and 18-crown-6 in 60 mL HMPA for 2 h yielded by distillation 1.34 g (37%) of Ph_2PCMe_3 , bp 141–144°C at 2 torr (lit.⁴ bp 144–146°C at 2 torr); ¹H NMR (CDCl₃) δ 1.15 (d, 9H, J_{PCCH} = 12.2 Hz), 7.15–8.2 (m, 10H); ³¹P NMR (CH₂Cl₂) δ 16.98; HRMS: 242.12238 (M⁺) (calcd. 242.12257).

The above reaction in the presence of $10 \text{ mol } \% \text{ } (t\text{-Bu})_2\text{NO}^{\cdot} \text{ yielded only } 4\% \text{ of } Ph_2PCMe_3.$

Tetraphenyldiphosphine

In a glove box under an argon atmosphere, PhCOCH₂HgCl (10 mmol) was added to the red solution of 10 mmol of Ph₂PH, Me₂COK and 18-crown-6 in 50 mL of HMPA. The color was discharged immediately. After 30 min of sunlamp irradiation, the solution was added to 50 mL of deoxygenated H₂O. Extraction with deoxygenated Et₂O followed by distillation gave 0.87 g (47%) of (Ph)₂PP(Ph)₂, bp 260–263°C at 1 torr, mp 120°C (lit.⁶ mp 120.5°C); ³¹P NMR (C₆H₆) δ 15.5 (lit.⁷ δ 15.2).

Tetraphenyldiphosphine Dioxide

Repetition of the above experiment in Me₂SO as solvent yielded upon recrystallization from toluene 0.91 g (45%) of Ph₂P(O)P(O)Ph₂, mp 167–168°C (lit.⁸ mp 166–167°C); ³¹P NMR (C₆H₁₂) δ = 25.92 (lit.⁸) δ 25.9).

Reaction of Tetraphenyldiphosphine with Dimethyl Sulfoxide

Tetraphenyldiphosphine (5 mmol) was stirred in 30 mL of Me₂SO for 30 min under argon with sunlamp irradiation. After 30 min a 78% yield of Ph₂P(O)P(O)Ph₂ was detected by g.l.p.c. Upon isolation a 72% yield of Ph₂P(O)P(O)Ph₂ was obtained. Under similar conditions in HMPA no more than 6% of Ph₂P(O)P(O)Ph₂ was formed in 1 h.

Reaction of t-BuHgCl with 2,4- $(t-Bu)_2C_6H_3OK$

Reaction of 1 mmol of t-BuHgCl with molar equivalents of 2,4-(t-Bu $)_2$ C $_6$ H $_3$ OK and 18-crown-6 in 10 mL of deoxygenated solvent with sunlamp irradiation for 2 h at 35–40°C produced 2,4,6-tri-t-butylphenol in 47% yield in Me $_2$ SO and 58% in HMPA. In HMPA in the presence of 0.1 mmol of (t-Bu $)_2$ NO $^\circ$, the yield was reduced to 8%.

Reaction of PhCOCH₂HgCl with PhCOCPh₂Li

Although the reaction of t-BuHgCl with PhCOC(Ph)₂Li or PhCOC(Ph)₂K yielded only PhCOC(Ph)₂CMe₃,¹ the reaction of PhCOC(Ph)₂Li with PhCOCH₂HgCl in deoxygenated HMPA at 35–40°C yielded PhCOCH₃ and PhCOC(Ph)₂-C(Ph)₂COPh in the presence or absence of irradiation. The presence of 10 mol % of t-Bu₂NO did not appear to have any significant effect on the reaction. Reaction for 3 h on a 1 mmol scale in 10 mL of HMPA yielded PhCOC(Ph)₂-C(Ph)₂COPh in 71% isolated yield, mp 146.5–147.5°C from MeOH-C₆H₆ (lit. mp 148–151°C).

ACKNOWLEDGMENT

This work was supported by Grant CHE-841540 from the National Science Foundation.

REFERENCES AND NOTES

- G. A. Russell and R. K. Khanna, J. Am. Chem. Soc. 107, 1450 (1985); Tetrahedron, 41, 4133 (1985).
- G. A. Russell, J. Hershberger and K. Owen, J. Am. Chem. Soc. 101, 1312 (1979); J. Organomet. Chem. 225, 43 (1982).
- Reaction of PhCOCH₂HgCl with (EtO)₂PO⁻ yields a complex mixture of ligand exchange products including PhCOCH₃ and (EtO)₂P(O)HgCl.
- 4. S. O. Grim, W. McFarlane and E. F. Davidoff, J. Org. Chem. 32, 781 (1967).
- 5. T. A. Albright, W. J. Freeman and E. E. Schweizer, J. Org. Chem. 40, 3437 (1975).
- 6. W. Kuchen and H. Buchwald, Chem. Ber. 91, 2871 (1958).
- 7. E. Fluck and K. Issleik, Chem. Ber. 98, 2674 (1965).
- 8. G. Frey, H. Lesiecki, E. Lindner and G. Vordermaier, Chem. Ber. 112, 763 (1979).
- 9. A. Lowenbein and L. Schuster, Justus Liebigs Ann. Chem. 481, 106 (1930).